The future of genetic treatments for PMS

David is missing many genes.

The Phelan McDermid spectrum of disorders

Phelan McDermid syndrome (22q13.3 deletion syndrome, PMS) comes in three flavors. By far, the most common variety of PMS that has been observed is a terminal microdeletion. A terminal deletion occurs when from three to 108 genes are chopped off the end of chromosome 22. There is a growing group of identified patients who have structural changes restricted to the SHANK3 gene, a gene very near the end of the chromosome. These changes can be minimal (e.g. single nucleotide polymorphism (SNP)) or substantial, with large parts of the gene duplicated or missing. The least studied form of PMS is found among those deletions that damage the same general region of chromosome 22 without affecting the very end of the chromosome where SHANK3 resides. These are often called interstitial deletions.

Genes of PMS

The SHANK3 gene is an elephant. It is a large, complicated gene and its disruption often (but not always) has severe consequences for its owner (the person harboring the mutation). Numerous studies show that the many genes of 22q13.3 contribute to intellectual disability, muscle tone and movement disorders, hearing problems, lymphedema, autism, schizophrenia and other problems. But, the penetrance of SHANK3 mutations, that is the likelihood that a pathological variant of the gene affects the owner, is high. So, it garners a lot of attention. Especially for people with the second flavor of PMS, fixing SHANK3 could ameliorate many of the symptoms associated with its disruption. For terminal deletions, the most common form of PMS, fixing SHANK3 should have at least a very helpful impact.

There are at least 18 genes that may need repair to fully restore normal function in a child with a large terminal deletion. Average size deletions (about 4.5 Mbase) would benefit from the repair of 10 genes. This blog discusses what we hope will be the future of PMS treatment: genetic repair. While regular medical treatments have been helpful for some problems, no experimental drugs have had an impact any better than physical therapy, speech therapy, ABA or other standard treatments for children with developmental disabilities. Although drug companies are sponsoring testing on children with PMS, these have traditionally been drugs looking for an application rather than targeted treatment for PMS.

We are in the early days

Excitement over gene editing, especially in stem cells (cells typical of a very early embryo) has led to giant research efforts and early attempts to fix diseases by editing. The same excitement has led to the promotion of unproven and occasionally dangerous therapies by entrepreneurs who provide services like stem cell infusion. So, let’s be clear. Gene therapy for PMS is well off into the future. There are many reasons for the delay. Some will be discussed below.

Obviously, we are at the earliest stages of gene therapy. Research and initial attempts at gene therapy target diseases that are the safest and most likely to work. This means that the disease most likely to be cured first may be a rather obscure one. It may also be a lethal disease, since the risks of side effects are no worse than letting the disease take its course.

One relatively safe way to test gene therapy is to modify blood products and then infuse them back into the body. This has safety advantages in a few different ways. First, the genetic modification occurs outside the body. The target cells can be modified without risking other cells of the body. Second, the target cells can be tested and evaluated for successful gene targeting (editing the right spot and not accidentally damaging another gene) outside the body. Third, the product can be infused a little at a time to test the benefits/impact gradually. Fourth, blood products usually have a limited lifetime in the body, so if the test begins having problems, the problems will likely go away with time. Thus, gene editing for diseases of the blood are good early candidates.

Another target for early genetics testing is the eye. It is a squeamish thought, but making injections into the eye are relatively easy. (I have had eye injections, so no need to educate me on the downsides.) The inner parts of the eye are well isolated from the rest of the body, which affords safety. Also, only very small injections are needed to bathe the retina. There is little likelihood of impacting the rest of the body. The amazing thing about eye therapy is that modern cameras and computers can take images of the eye with spectacular resolution. These images can track changes. Combined with vision testing, any progress associated with the therapy is easy to assess. As gross as it sounds, if something goes wrong with gene editing of the eye, the eye can be removed. Gene therapy for the eye would be to save vision. If vision will be lost with no intervention, the risks of trying a new therapy may be acceptable. Thus, genetic defects of the retina are high on the list of early therapeutic trials.

The human brain is not well isolated from the rest of the body and is not easily observed from the outside. There is a barrier between the bloodstream and the brain. The so called blood-brain-barrier can make treatment more difficult. Drugs injected into the bloodstream (systemic injections) may or may not reach the brain. Direct brain injection of genetic altering “vectors” may be an approach used in the future, but it is not ideal. Systemic injections would be a simpler way to reach all parts of the brain and to allow repeat injections to gradually reach the desired effect while watching for side effects. So, genetic editing in the brain is not going to be as simple as other targets.

Once we start thinking about genetic manipulations in the body, we need to remember that nearly every cell in the body has the same 20,000 genes. Given that all cells in the body could be the same, what makes heart and lungs different from kidney and brain? The answer is gene expression. Heart cells know they are heart cells because only heart cell genes are turned on, making the proper heart cell proteins in the proper proportions. We hope that injecting a vector into the body will improve brain function, but we must worry about what else may change. We worry in two ways. First, we could modify our target gene in such a way that the brain improves, but the heart (or some other organ) suffers. Second, we could accidentally modify other genes (so called, off target effects) that have no adverse impact on brain cells, but might be bad for the heart. I used the heart as an example, but there are so many different tissues in the body we cannot know which might be adversely affected.

One more consideration is important in choosing a target for the early tests of genetic therapy. The complexity of the organ and the importance of early development in creating its detailed structure influence the age at which therapy may be effective. The brain is complex almost beyond comprehension and its early patterning during development is critical to adult function. Repair of a gene after early development may have limited benefit, and except for the most deadly of disorders, we dare not test interventions on fetuses or babies until we are confident of our methodology. Additionally, the complexity of the brain poses another risk. Increasing the production of a gene may be beneficial for one part of the brain, but could be detrimental elsewhere in the brain.

The challenges of PMS

The opening of this blog hinted at some of the challenges of PMS. Together with the subsequent discussion, we can now list the major challenges of applying early genetic methods to PMS: 1) the overwhelming majority of people diagnosed with PMS are missing many genes and modern methods are still struggling for success with single genes, 2) the gene of greatest interest is large and complex, neither of which is good for gene editing, 3) the brain is a challenging target for genetic manipulation, and 4) PMS is a developmental disorder and we have insufficient information on whether treatment in older children or adults will be beneficial.

Given the many hurdles, it may be a very long time before a comprehensive treatment for PMS emerges. To be sure, there are people working on strategies to manage the disadvantages. One approach is to target only one gene in the hopes that at least some subset of patients might benefit. Likewise, there are model (rodent) experiments that suggest some of the deficits of PMS can be mitigated by treating adults. Genetic treatments for other diseases are addressing the problem of reaching the brain without adversely impacting other organs. Both animal and early clinical trials are creating improved toolboxes for genetic therapies. We hope these technologies converge on better opportunities for PMS.

Progress in the field

Techniques like CRISPR/Cas9 grew out of studies in bacteria and other science far afield from human clinical work. Recent work in E. Coli and other bacteria, as well as work on yeasts and viruses have moved genetic editing towards more precise targeting, the possibility of replacing whole deleted sections of chromosome, and the ability to enhance the activity of the remaining gene after one has been deleted. There are new methods of turning on and off a newly inserted gene, so the proper dose of a gene can be safely titrated to avoid overdose. This blog has not addressed the different methods of gene editing and which ones might apply to PMS. Rather, it provides a framework to understand why one approach or another might be more suitable. Perhaps a future blog will cover the different tools and which ones are likely to provide the first clinical tests.

A strategy for PMS

After reading the scientific literature and talking with scientists, I have a policy suggestion for how we should approach PMS. Currently, the only genetic intervention being pursued for PMS is targeted at the SHANK3 gene. There are historical and logical reasons for targeting this gene. It is highly associated with several developmental disorders. That work should continue, but from a technical perspective, SHANK3 is not an easy gene to treat. The SHANK3 gene can produce from 20 to 100 isoforms (versions) of the shank3 protein, up to 1731 amino acids in size. (By comparison, the UBE3A gene associated with Angelman syndrome produces a maximum of 12 ube3a isoforms, with 875 amino acids being the largest. The MECP2 gene associated with Rett Syndrome, has two isoforms, with 486 amino acids being the largest.) Manipulating a large, complex gene like SHANK3 has consequences, at least some of which will likely be negative consequences. Like all early genetic clinical studies, initial trials will be on a few hand-picked cases. Unfortunately, even among people with SHANK3 mutations, there are many flavors and early treatment methods might not generalize to many patients.

If we are serious about a long-term solution for PMS we need to work on a smaller and more simple gene. Solving problems caused by SHANK3 is going to be a very slow process. We should choose a gene much easier to fix, and yet still has a serious impact in our children with PMS. The idea is to bring relief sooner, and to begin the important task of treating the full spectrum of PMS. There are 17 possible genes, three or four of which are among the best candidates. One possible target is BRD1. This is a regulatory gene that has been very well characterized. It is smaller than SHANK3 and one copy is missing in about 90% of the PMS population. Evidence so far supports the importance of missing only one copy of BRD1.

Titrating expectations, but not hope

There is always a balance between the enthusiasm for research into effective treatments and maintaining a realistic view of scientific progress. Young parents have so many compromises to make in their hope for the future when they receive a diagnosis of PMS. Placing the disorder into perspective takes years. We grow into a life consumed by a child with a major developmental disability. Hope requires embracing the possibilities, maintaining enthusiasm about the future, yet titrating our expectations to match today’s realities. We are a long way off. Our own children will likely be adults, perhaps old ones, before effective genetic treatments are ready for widespread application. We need to be realistic about our expectations without diminishing our hopes. Indeed, this is what raising a child with PMS is all about.

 

arm22q13

 

 

 

 

 

 

 

 

 

 

 

Advertisement

MAPK8IP2 (IB2) may explain the major problems with walking and hand use

David November 2018
David is enthralled with guitarists, like Jimi Hendrix and David Matthews. Maybe it is because he has poor hand dexterity. David needs an adaptive controller to select videos.

David has very poor hand control and he required years to develop the balance and coordination for walking. These characteristics are common among children with Phelan McDermid syndrome (PMS), but less common and less severe among among children with SHANK3 variants.  A paper recently presented at the annual Society for Neuroscience meeting (SfN2018) may explain the important difference (Modeling of NMDAr-dependent mechanism of cerebellar granular layer hyperfunctioning in the IB2 KO mouse model of autism).  This research out of the University of Pavia in Italy looks carefully at a mouse missing the Mapk8ip2 gene, also called Ib2.  I have written about this gene before: Which PMS genes are most associated with Autism? and Which PMS genes are most important? The new research shows that the microcircuitry of the cerebellum is greatly disrupted in the Ib2 knockout mouse.

Technical description: The evidence from recording of cerebellar granular cells indicate that NMDA receptors at synapses are dysfunctional in the Ib2 knockout mouse. The receptors are overstimulated, which disrupts the excitation/inhibition (E/I) balance of the neurons. Computer models show that the dysfunction of the NMDA receptors can explain the severe synaptopathy in the mouse’s cerebellum.

The practical result is poor cerebellar function.  What does the cerebellum do?  Wikipedia explains: “The human cerebellum…contributes to coordination, precision, and accurate timing…Cerebellar damage produces disorders in fine movement, equilibrium, posture, and motor learning in humans.”  Sound familiar?  To me, this sounds like David (pictured, above). He has problems learning any new motor task.  He has problems retaining skills he has learned. His balance problems undoubtedly come from problems with his cerebellum.

Why is this problem so common among PMS children? That is easy to answer. Aside from SHANK3, MAPK8IP2 is the most frequently lost important gene of PMS. The two genes are very near each other on the chromosome and the vast majority of terminal deletions impact both genes.

It is possible that loss of SHANK3 contributes, to some degree, to the problem in the cerebellum.  Shank3 is present in one cell type of the cerebellum.  However, the new research shows that the major dysfunction produced by loss of Mapk8ip2 occurs independently of Shank3.

It is nice to start getting some answers.  MAPK8IP2 is likely the most important PMS gene for balance and fine motor control. Even more exciting is that earlier work showed an already-approved FDA medication, memantine, improved behavior in Ib2 knockout mice. I wonder if this medication could help David now?

arm22q13

Previous blogs

TCF20 may explain why some big deletions are worse than others
Current trends in SHANK3 research
Which PMS genes are most associated with Autism?
Does SHANK3 cause Autism?
We need to study interstitial deletions to cure PMS
What do we know about PMS genes?
Which PMS genes are most important?
Are children with Phelan McDermid syndrome insensitive to pain?
Looking for Opportunities
Splitting, Lumping and Clustering
Defining Phelan McDermid syndrome
Why don’t we have better drugs for 22q13 deletion syndrome?
What do parents want to know?
Is 22q13 deletion syndrome a mitochondrial disorder?
Educating children with 22q13 deletion syndrome
How to fix SHANK3
Have you ever met a child like mine?
How do I know which genes are missing?
Mouse models
Science Leadership
How can the same deletion have such different consequences?
22q13 and the hope of precision medicine
22q13 Deletion Syndrome: hypotonia
Understanding gene size
Gene deletions versus mutations: sometimes missing a gene is better
Is 22q13 deletion syndrome a ciliopathy?
Understanding translocations in 22q13 deletion syndrome: genetics and evolution
Understanding deletion size
Can 22q13 deletion syndrome cause ulcerative colitis?
Can 22q13 deletion syndrome cause cancer?
22q13 deletion syndrome – an introduction

Current trends in SHANK3 research

David reaching for food
David likes to munch on pieces of cereal bar and watch music videos.

David, like most people with Phelan-McDermid syndrome (PMS), is missing one of his two SHANK3 genes. One copy of SHANK3 is gone, the other copy is intact. Some people with PMS have both copies fully intact (often called interstitial deletions) and some people have small or large disruptions of SHANK3 without affecting other genes (often called variants or mutations). For the vast majority of people with PMS, loss of SHANK3 contributes to the problems of PMS. Fixing SHANK3 has been a priority in the PMS world, although fixing SHANK3 won’t necessarily fix PMS (see Which PMS genes are most important?). I am an advocate for studying (and fixing) the other critical genes of PMS (see Looking for opportunities and Why don’t we have better drugs for 22q13 deletion syndrome?). Too much focus on SHANK3 has been an impediment to progress. Regardless, this blog is about SHANK3 research.

Science is slow

The autism world is hot on SHANK3, so research on this gene has moved forward relatively quickly. That sounds like good news, and it is, as long as we recognize that “quickly” is measured in decades. Research on SHANK3 started when my son, David, was 12 years-old. He is now 32. Over the past 20 years there have been many papers heralding the “rescue” of autism-behaviors in SHANK3 mice. Parents need to understand that “rescue” is mouse research jargon for “our genetically modified mouse is different from normal mice, and the drug we tested made them a little more like normal mice”. It does not mean “a treatment is almost here”.

The reality of research progress is less rosy than the headlines. Most research studies are done these days on rodents. A mouse with a modified SHANK3 gene is nothing like a human with PMS. Most mouse models are SHANK3 mutations, not deletions. Most people with PMS have deletions (see Gene deletion versus mutation: sometimes missing a gene is better), and human deletions affect other critical genes (see How do I know which genes are missing? and Which PMS genes are most important?). Most “SHANK3 mice” have mutations in both copies of the gene. Mutation of just one copy often results in no detectable effect. Contrast that with humans, where it is unlikely that humans can even survive without at least one working copy of SHANK3. Further, although this should be obvious, only rodent researchers talk about “autism-like behavior” in rodents. It is a rather strange concept. Measuring autism in PMS patients is difficult and sometimes controversial. There is no measure of autism in rodents, just tests to see if a mouse prefers exploring another mouse over an inanimate object. Why a mouse might do that is anyone’s guess. Certainly, you won’t have much luck asking the mouse.

It is not simply bad luck that multiple drug rescues have been reported in mice without the development of any PMS or even autism drugs that work on the core symptoms in people. The reality is that not enough is understood about the relationship among genes, drugs and behaviors. To date, there are no PMS-specific drugs currently available for testing on people. If you get invited into a drug study, that drug was invented for some other purpose. Most often, it was a drug that failed its original purpose and researchers or drug companies are looking for a different disease group to test it on.

Despite the limitations of mouse research for testing drugs, mouse research does help us learn about the proteins used in the brain and what category of drugs might someday be useful for treatment.

SHANK3 regulation

Twenty years of looking at SHANK3 has laid important groundwork. More recent studies have benefited from these earlier studies and from development of new research tools. Researchers are beginning to address the complexity of SHANK3 regulation. SHANK3, like most genes, is simply a recipe for making its protein, shank3 (note lower case spelling, no italics). The recipe is copied onto a template called mRNA, and then many copies of shank3 are manufactured using the mRNA template. The shank3 protein is then delivered to the synapses that need more. Like any manufactured commodity, you need to manage the supply to meet the demand. The manufacture takes place at the factory of the cell (soma) and shank3 is used in 10,000 to 100,000 or more synaptic sites elsewhere in the cell. Thus, there is an ordering and distribution network throughout the cell. Orders for more shank3 come from thousands of different sites. SHANK3 regulation is the complex process of making sure the right amount of shank3 is available at each synapse at any given time.

Synapses are the communications connection between neurons. Each synapse has a different strength of connection, and together, turn the protoplasm of the brain into an amazing computer-like machine. The machine is constantly adjusting itself to perform the tasks we call learning, memory, skill acquisition, and decision-making. Like a muscle, when a synapse is used more, it tends to get stronger and larger. That is how the computer adjusts itself. The increase and decrease of shank3 is important for these adjustments. Thus, processes like learning and memory rely on having the right amount of shank3 at the synapse. Regulation of shank3 production, distribution and utilization starts with the amount of synaptic activity at each of thousands of synapses. Complex processes connect synaptic activity with every step of shank3 production and distribution.

New research on SHANK3 regulation

There are two new papers on SHANK3 regulation that represent the next steps in understanding how the cell manages the amount of shank3 protein at each synapse. One paper forces us to rethink about what a shank3 deficiency really means.

Campbell and Sheng just published a paper on DUB enzymes and the regulation of shank3 at the synapse (USP8 Deubiquitinates SHANK3 to Control Synapse Density and SHANK3 Activity-dependent Protein Levels). DUB enzymes prevent the destruction of a protein. Normally, shank3 is destroyed after use by the USP system. These authors have identified an enzyme “USP8”. When the synapse gets very active, USP8 finds shank3 (and shank1) molecules already tagged for destruction by the USP system, and untags them. It is part of the cell’s natural system to retain extra shank3 in anticipation of needing to build up the synapse for future increases in activity. The authors point out that drugs might someday be found to mimic USP8 and help increase the amount of shank3 at the synapse of those people who have insufficient shank3 production.

In the other recent study, work by Yan and her colleagues has teased-apart some of the communications between the synapse and the nucleus used to regulate shank3 production (Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition). They show that too little shank3 at the synapse can trigger movement of β-catenin to the nucleus. The surprising part is that when β-catenin reaches the nucleus, it triggers a series of genetic effects that lead to unusual mouse social behavior. The unusual behaviors can be turned on and off independently of shank3. Thus, the strange social behaviors of these mice are not caused by shank3 levels directly. Rather, the reduced shank3 simply releases β-catenin. It is a case of synapse regulation system gone awry. These results suggest that shank3 is not the most important protein for poor social behavior. Rather, the reduced level of shank3 triggers a series of events that improperly regulate other brain genes. Curiously, this agrees with another recent study of proteins in humans with autism (see Which PMS genes are most associated with Autism?).

This is the end of the blog except for a few final thoughts, below. For those who wish to dig a little deeper into the science, I have provided additional background material on genes, proteins and regulation called “A primer on the lifespan of a protein“.


A primer on the lifespan of a protein

This is a primer about the lifespan of proteins. Shank3 is a protein (note lower case spelling for the protein). Like nearly all proteins, it is born, gets called-upon to work, does its job, then is dissolved and discarded. The most important point is, the amount of shank3 in the cell is highly regulated. At any given moment, there are complicated processes deciding how much is needed and where it is needed. Usually, some parts of a cell may be building up shank3 supplies and incorporating them into synapses, while other parts of the cell are breaking down shank scaffolding (structures built from shank molecules). I sometimes think of shank3 as a construction material, like plywood. Lots of wood scaffolding may be used to frame a concrete pillar. After the pillar is in place, the wood may be torn down and discarded. Some wood may be discarded at the same time other is being nailed in place for the next pillar, wall or sidewalk. You always want a supply of wood around, but that supply should never be more than the anticipated need. Construction management involves reading blueprints, anticipating needs, ordering the manufacture of materials, and delivering what is needed, on time. Timely and organized manufacture, distribution, utilization and disposal of shank3 very important for the cell.

SHANK3 manufacturing

The SHANK3 gene is simply a blueprint for shank3 protein. The blueprint is converted into a template for stamping out the protein (call mRNA). Gene regulation (via “promoters”) control how many copies of mRNA are created. Each mRNA is degraded and discarded after a certain number of copies of shank3 have been made. While functioning, mRNA is used to stamp out copies of shank3. Shank3 is then transported and collected in a pool of proteins near the synapse. The synapse is a very active site, like the beehive of activity at a busy construction site. Shank3 molecules near the synapse gets incorporated into the “post-synaptic density” as needed. The buzz of activity includes constantly building up and breaking down of shank3 molecules. Old shank3, whether it be after a piece of scaffolding is no longer needed, or if the molecule has been sitting around unused, is degraded and discarded.

Breakdown and disposal of shank3 protein

Shank3 is tagged and trashed by the USP system (ubiquitin-proteasome system). Ubiquitin tags it and the proteasome dissolves it. That is the last step in the life cycle. There is a way of untagging, with a deubiquitinating enzyme (DUB), which I would never even mention except that a recent study looks at untagging as a way to increase shank3 levels at the synapse.

Regulation of shank3 occurs at every step

Many different processes regulate transcription (making the mRNA template), synthesis (stamping out shank3 molecules), incorporation (using the shank3), and degradation (USP system). Each of these processes is a potential therapeutic target for increasing shank3 protein in people who have only one working copy of the SHANK3 gene.

Early work on shank proteins (shank1, shank2 and shank3) focused on how each protein is used at the synapse. Increases in shanks are associated with establishing and maintaining strong synaptic connections, whereas decreases can inhibit the formation of new connections. Too much or too little shank3 affects the sizes or number of synapses. Synapse size is related to information transmission in the brain. Too much information from the wrong channel creates noise. Too little information interferes with learning, memory, skill acquisition or other function. Thus, the early research looked closely at shank3 levels at the synapse.

Shank3 production is largely regulated in the cell nucleus where DNA is found. Each brain cell has only one nucleus, yet it regulates shank3 production for thousands to over 100,000 synapses in that cell. So, the signal to increase and decrease Shank3 production comes from a potentially huge number of synapses and converges at the one and only nucleus. Transcription (making the mRNA template) is regulated by many mechanisms. Most mechanisms influence the “promoter” region of a gene. That is the region where the hardware for reading DNA and making the mRNA template is assembled to do that task. A dizzying array of molecules influence the promoter region. To complicate things even more, shank3 has not one, but 7 total promoter regions that regulate not only when to transcribe, but also which of the 20 to 100 various versions of Shank3 to produce. Yes, there are at minimum 20 versions (isoforms) of shank3 produced during a person’s lifetime. “Turning on and off” a gene is another way of saying the gene is set to transcribe or not. In actuality, neurons that use shank3 don’t turn the genes on or off. Rather, they increase and decrease transcription rate of one, two, up to 20 isoforms of shank3. If it sounds complex, it is. Most papers focus on one or two isoforms. They overlook the rest to make the research manageable. For the moment, it is enough that we recognize that transcription of the SHANK3 gene for making mRNA and many copies of the shank3 protein is regulated at each step. The gene is regulated largely at the promoters, controlling how many mRNA molecules are created for which isoforms. Recent studies have looked for ways to modify the regulation of transcription to compensate for a missing copy of the SHANK3 gene.

Shank3 mRNA is used to synthesize shank3 protein. How rapidly shank3 protein is produced is, like the other steps, under careful regulation. For example, each mRNA does not last forever. At some point it is disassembled (degraded) and can no longer produce protein. Its regulation is yet another possible way to manage shank3 protein production.

As mentioned earlier, shank3 protein is used (or just sits around waiting), and is then broken down by the USP system. Unlike signaling in the nucleus, the USP system is operating at or near the synapse. It can influence shank3 availability on a fine grained scale.

Increasing or decreasing shank3 with blunt instruments

Each step along the life cycle of shank3 is an opportunity to increase the amount of shank3 in the cell. One might be eager to try one or many of the steps on mice or people. This eagerness should be tempered by the potential pitfalls of circumventing the normal regulatory process of the cell. Let’s remember why shank3 is so highly regulated. Shank3 levels must be adjusted at each synapse on an individual basis. Large cells can have up to 200,000 synapses. If we choose to increase shank3 transcription in the nucleus, we may start to force some, perhaps too many, synapses to overproduce shank3. The cell needs to remove unnecessary and unwanted synapses (called “pruning”). Pruning is one of the most important processes in brain development. Another related process is called synaptic homeostasis. One theory about why sleep is important is that it gives the brain a chance to readjust all the synapses to consolidate learning and properly reset the brain for new learning the following day. Both pruning and homeostasis are likely affected by changes in overall shank3 levels.

A drug that simply increases the shank3 in a cell could be beneficial, but we must be wary of blunt instruments. We must be concerned that increasing shank3 by short-cutting the built-in regulation of shank3 may worsen PMS, or perhaps replacing one problem with a new one. This is why a potential drug treatment requires thorough testing in animals to develop a deep understanding of the mechanism of action. Improving one behavior in a mouse is not enough. At a minimum, we need to carefully explore what other behaviors might be affected in the model animal. In this blog, I have not discussed that SHANK3 is used in different ways in different parts of the brain, and regulation is likely to vary for each brain region. Methods to deliver different amounts of a drug to different brain regions are complex and experimental.

Mice are handy experimental animals, but their brain function is not at all like human brain function. In mice, you can remove 100% of all shank3 protein and the mice, although behaviorally unusual, are able to eat, drink, run, play and procreate much like normal mice. Humans missing both copies of SHANK3 are unheard of, most likely because they don’t survive in the womb.


Final thoughts

The take-home messages from the new research are simple enough. First, there is much hype in the online press reports and magazines about scientific progress. The fact is, science is slow and we have a long way to go. The details are sometimes complicated, but the basic principles are not. Second, studies of shank3 have not reached the point where we truly understand the relationship between SHANK3 gene loss and the many problems that result. Progress is being made, but, as often happens in science, the latest results tell us what we thought we understood was not exactly correct.

arm22q13

Previous blogs

Which PMS genes are most associated with Autism?
Does SHANK3 cause Autism?
We need to study interstitial deletions to cure PMS
What do we know about PMS genes?
Which PMS genes are most important?
Are children with Phelan McDermid syndrome insensitive to pain?
Looking for Opportunities
Splitting, Lumping and Clustering
Defining Phelan McDermid syndrome
Why don’t we have better drugs for 22q13 deletion syndrome?
What do parents want to know?
Is 22q13 deletion syndrome a mitochondrial disorder?
Educating children with 22q13 deletion syndrome
How to fix SHANK3
Have you ever met a child like mine?
How do I know which genes are missing?
Mouse modelsScience Leadership
How can the same deletion have such different consequences?
22q13 and the hope of precision medicine
22q13 Deletion Syndrome: hypotonia
Understanding gene size
Gene deletions versus mutations: sometimes missing a gene is better
Is 22q13 deletion syndrome a ciliopathy?
Understanding translocations in 22q13 deletion syndrome: genetics and evolution
Understanding deletion size
Can 22q13 deletion syndrome cause ulcerative colitis?
Can 22q13 deletion syndrome cause cancer?
22q13 deletion syndrome – an introduction

22q13 deletion syndrome: How do we know which genes are important?

David resting

Facebook like

When I get on Facebook I look for pictures of our 22q13 deletion syndrome kids.  Every time I see one I give it a “thumbs up”.  It warms my heart to see other parents share their pride in their children, even if our children are peculiar in some way.  Our snapshot may capture a funny posture or gait.  David is almost always looking away from the camera.  Some 22q13 kids are captured chewing on “non food items”.  We post photos to show our pride in accomplishments that would have been easy for most other kids.  Our children are usually not very photogenic, except to families and, of course, other parents of kids with 22q13 deletion syndrome.

There are some pictures that we don’t put on Facebook in deference to families that could not appreciate them.  There are pictures of feces on the sofa, self-inflicted injuries, frightening hospital scenes, and even pictures after an early death. The reality of 22q13 deletion syndrome is often not pretty.  However, our goal is not to provoke a reaction. We simply want to share joy or commiserate with our community, like all parents.

David, like the overwhelming majority of children with 22q13 deletion syndrome, has many things wrong.  He is missing more than one or two genes and the impact is pretty obvious.  Ninety-seven percent of children with terminal deletions are missing from about 30 to 200 genes (see Understanding deletion size).  Science can help us find ways to help our children.  The first step is to find out which gene causes which problem.  Fortunately for our children, science has a bunch of relatively new tools to help create this “genotype-phenotype map“.

First things first.  Let’s have a look at the list of genes that are lost with a 22q13 terminal deletion (the most common type of deletion).Genes lost in 22q13 DS

This is a list of genes organized by deletion size.  The deletion size on the left corresponds to the list of missing genes of the same color on the right.  A 1 Mb deletion will delete all genes in dark brown, starting from RABL2B and ending with ALG12 (33 genes).  The next group (reddish brown) are missing if your child has terminal deletions of 5 Mb or more (16 more genes, giving a total of 49 genes).  That covers about half of all common terminal deletions.  Terminal deletions have been observed for sizes up to about 9 or 10 Mb.  The genes above that are usually missing only with certain interstitial deletions.

Ok, so now we have our list.  The crucial question is, which genes do what?  In the past few years scientists have built some rather clever and remarkable tools for figuring this out.  Here are some tools and some examples of how they can be used.

Comparing 22q13 genes with known genetic syndromes

Online Mendelian Inheritance in Man (OMIM) is a database of genes and the problems associated with them.  By choosing a trait like poor body temperature control (poor thermoregulation) or low muscle tone (hypotonia), you can find out what genetic disorders have that feature.  From that information, you can identify which genes are involved.  Sound complicated?  Not at all. If you go to the Human Phenotype Ontology web site and type in “abnormal muscle tone” it does the entire cross-reference in a few seconds.  Click the tab for “genes” and you get a list.  I did just that.  I found which genes match the list of 22q13 genes and highlighted them here.

What is interesting about this list is that only two genes are directly involved with the synapses of the brain (SHANK3 and MAPK8IP2).  Other genes linked to hypotonia have other important functions. One gene is important for the synthesis of neurotransmitters (SULT4A1). Some genes affect white matter and peripheral nerves (ARSA and SBF1).  Another gene affects the muscles directly (CHKB).  Some genes affect many organs (ALG12 and NAGA).  As I see it, each gene is an opportunity to find a treatment for our children.  If one gene is complicated and hard to study, there are other genes that might lead more quickly to important benefits, like new treatments.

Comparing 22q13 genes with genes that work specifically in the brain

If we are interested in behavioral problems and intellectual disability we can benefit from a recent scientific study that has created a list of genes that are specialized for the brain (Pandey et al., 2014).  Using a “gene expression atlas,” these researchers identified genes that are either used (expressed) at a very high level in the brain, or used much more in the brain than anywhere else.  The logic is simple, if the brain treats these genes as important, then they must be important.  Genes lost - Brain

Only 4 genes show up.  These are obviously 4 genes that deserve careful research to help people with 22q13 deletion syndrome.  Two of these genes, MAPK8IP2 and SULT4A1 also appeared in the hypotonia gene search.

Comparing 22q13 genes with genes that evolved for a specific purpose

One of the most interesting new methods for understanding the role of genes comes from the study of how humans evolved.  I have already written about the value of this approach (see Is 22q13 deletion syndrome a ciliopathy ?).  There is an interesting website that automates the process of studying evolution. This approach, called “forward genomics” is more difficult to use than the previous two examples, but this method may solve some important problems.  I am very interested why David gets too hot in the sun and too cold after a bath.  That is, why does he have problems regulating his body temperature.  By studying the scientific literature on which animals are good at body temperature regulation and which animals are not, this web site will tell me which genes are involved.  My job is to read textbooks and papers to find out how well each of 27 species of animals regulate their temperature.  Once I do that, I can ask the website to scan the genomes of these species and identify which genes are associated with the emergence (or loss) of the ability to regulate body temperature. It is a fascinating approach and I am very eager to learn the results. The results may open the door to lowering the risk of febrile seizures.

Other methods

There are other methods for finding genes that affect our children in specific ways.  For example, gastroesophageal reflux was such a serious problem for David that he required major abdominal surgery (Nissen fundoplication).  A comparison of reflux with known genetic conditions (similar to the hypotonia example) provided no new information about 22q13 deletion syndrome genes.  However,  the search did produce a list of 48 reflux genes. How can we use the reflux gene list to learn more about 22q13 genes?  First, there is an analysis method called “guilt-by-association“.  This analysis will indicate which 22q13 deletion syndrome genes naturally operate in concert with the reflux genes.  A even more complex analysis tool for protein-protein interaction can identify which 22q13 genes have chemical interactions with reflux genes. I expect one or more 22q13 deletion syndrome genes will be associated with reflux after these analyses.

Tremendous progress has been made in the understanding of how genes contribute to disorders.  The best way science can help our children is by identifying the many different genes that cause the many different problems.  That is Step One and modern methods make that step much easier and more informative that the old methods of the past.  Step Two is to find treatments.  Many of these genes have been studied in great detail.  Some have related treatments either already in use or suggested by researchers.  As a parent, I want to see new treatments found for David.  As a researcher, I don’t understand why we are not taking these potentially fast tracks to treatment.

 

arm

Previous posts:
22q13 Deletion Syndrome: hypotonia
Understanding gene size
Gene deletions versus mutations: sometimes missing a gene is better.
Is 22q13 deletion syndrome a ciliopathy?
Understanding translocations in 22q13 deletion syndrome: genetics and evolution
Understanding deletion size
Can 22q13 deletion syndrome cause ulcerative colitis?
Can 22q13 deletion syndrome cause cancer?
22q13 deletion syndrome – an introduction